Written By Jeffery Waldron
@VoidXDcypher

Block 1 — Project Title
Kali Linux 2025.2 Virtual Machine Installation & Verification

Block 2 — Objective

The goal of this project is to establish a clean and verified Kali Linux 2025.2 virtual machine
as the first component of my home cybersecurity lab. I chose Kali as a starting point because
it provides a pre-configured set of penetration testing tools, allowing me to focus on
learning Linux fundamentals and testing workflows without spending time on complex
installations. By verifying the image integrity and documenting the build, this project
ensures a reliable baseline that I can expand, harden, and replicate for future projects.

Block 3 — Asset/Environment Details
e Host Machine: Acer Nitro 5

e Host 0S: Windows 11
e Virtualization Platform: VMware Workstation Player 16
e Guest OS: Kali Linux 2025.2 (x64)

e Download Source: Official kali.org VM image

Block 4 — Build Procedure (Summary)

To begin this project, I removed my previous Kali VM to ensure a completely clean starting
point. VMware Workstation Player 16, which I had already installed several months ago,
served as the virtualization platform. I then navigated to the official kali.org website (See
Fig.1) and downloaded the Kali Linux 2025.2 image. I chose Kali as my base environment
because it comes preloaded with the penetration testing tools [need, which allows me to
focus on learning workflows rather than spending time on initial tool installations.

The download process itself presented challenges due to unstable hotspot connectivity and
limited data availability. The file took nearly a full day to complete, as I had to top up my
data plan and repeatedly click “retry” to resume failed downloads. These interruptions
made me acutely aware of how exposed I was to the risk of file tampering or corruption
during transfer.

This realization led to a critical step in the build process: verifying the file’s integrity before
using it. [initially considered using the standard PowerShell Get-FileHash command, but
it quickly became clear that manual verification would be tedious and prone to human error,
especially when comparing long hash values by sight. I also recognized that this would not
be the last time I needed to perform hash checks—this would become a regular part of my
workflow whenever I download system images or critical files.

To solve this problem, I created a custom PowerShell script that automated the process (See
Fig. 2 and 3). The script prompts for the file location, calculates its SHA256 hash, and then
directly compares it to the official hash value from the vendor (See Fig. 4). If the two values
match, the script confirms integrity; if not, it immediately flags a mismatch. This approach
not only improves accuracy but also gives me a repeatable tool I can use for all future
downloads.

Once the image was verified, I made a clean backup copy of the original file and saved it to a
separate location as a backup (See Fig. 5). This ensures that I can always restore a pristine
version of the VM image if needed. After creating the backup, I loaded the verified image
into VMware Workstation Player and checked the original configurations for the virtual
hardware settings (See Fig. 6). I then booted Kali Linux for the first time, completing the
initial build phase. The VM is now running and prepared for further configuration, updates,
and hardening (See Fig. 7).

Block 5 — Issues Encountered

The main challenge during this build process was related to the instability of my network
connection. Because I was using a mobile hotspot with limited data, the Kali Linux image
download frequently failed, requiring me to manually restart and resume the process
several times. This added significant delays, extending the download time to nearly a full
day.

Another issue I identified was the inherent security risk of downloading large OS images
over an unreliable connection. [realized that without verification, [could not fully trust the
integrity of the file | had downloaded. This awareness led directly to the creation of my
custom PowerShell hash verification script, which resolved the problem of manually
checking file integrity and eliminated the risk of overlooking a mismatch.

Lastly, this was my first time creating a cybersecurity project report outside of a military
format. I found that I was initially frustrated by “blank page syndrome,” and I realized how
essential structured templates are to documenting technical work effectively. This
realization led me to begin developing my own reusable report templates, which will
improve the clarity and speed of future documentation such as this.

Block 6 — Key Evidence

88 Installer Pre-built VMs ARM Mobile Cloud Containers Live wsL

® Recommended ® Recommended ® Recommended

H4 ©® =

VMware VirtualBox Hyper-V
e ‘[\' torrent docs sum torrent docs sum 2 ‘[\' torrent docs sum
QEMU Fig. 1

Write-HosT -\Chksum.psl "CiirFathiylolklle.zip""™
Write-Host " (Displays the calculated SHA256 hash and then asks for a verification hash)"
Write-Host ""
Write-Host ™ .\chksum.psl 'C:\Path\To\File.zip" SF2A7C3D..."
Write-Host " (Calculates and compares directly with the prowvided hash)™
Write-Host "™
Write-Host "Options:"
Write-Host " -h, --help Show this help menu"
exit

}

If no file path was provided, ask for it
—|]if (-not $FilePath) {

SFilePath = Read-Host "Enter the full path to the file you want to check"
}

Check if the file exists
—Jif (-not (Test-Path $FilePath)) {
Write-Host "Error: File not found at $FilePath"
exit

}

Calculate hash

$calculatedHash = (Get-FileHash -Path $FilePath -Algorithm SHAZ56E) .Hash
Write-Host "'nCalculated SHA256 Hash:"

Write-Host $calculatedHash " "n"

If no expected hash was provided, ask for it
—|]if (-not $ExpectedHash) {

SExpectedHash = Read-Host "Paste the verification hash here”
}

Compare hashes
—if ($calculatedHash.ToUpper() -eg $ExpectedHash.ToUpper()) {
Write-Host "Hashes match. File integrity verified."
} else {
Write-Host "Hash mismatch. The file may be corrupted or tampered with."

| Fig. 2

» nowershell

Enter the full path to the file you want to check:
Wkali-linux—-2025.2-vmware—amdéd.7z

Calculated SHA256 Hash:
A938953601709665FC8U858C6658D800CUBALSB237C56U4BOBC5815BBA80UL9BA

Paste the verification hash here: a938953601709665fc84858c6658d800cy
bad8b237c56Ub0bc5815bba8ouUoba

Hashes match. File integrity verified.

PS C:\Users\VoidX> |

Fig. 3

Virtual Machines Documentation »

® Recommended ® Recommended

SHA256sum
2938953601709665F
c84858c6658d800c4
ba48b237c564bobc5

815bba80449ba)
VirtualBox Hyper-V
£ torrent docs sum + torrent docs sum 4 torrent docs sum
A M 4
Kali Backup T/26/2025 6:55 PM File folder |
Logo 7/26/2025 5:56 PM File folder
Scripts File folder
Templates File folder
Tools File folder

Fig. 5

tayer ~ | P~

=
H

Device Summary Memory
Specify the amount of memory allocated to this virtual
size must be a multiple of 4 MB.
Home [Processors 4
Hard Disk (SCST, 80.1GB -
% ard Disk (SCSI) Memary for this virtual machine: 2048 % | g
kali-linux-2025.2-vmware-amd64 - Network Adapter NAT
(%) uss controller Present
) Sound Card Auto detect GHGE
[Ipisplay Auto detect 3268
16GB <
8GB W Maximum
6@ (Memory
2@ <] q oceur bey
13.3 GB
1GB
512 e W Recomme
256 MB
268
Virtual Machine Name: 128 MB
- 1= 64 MB
kali-linux-2025.2-vmwz B Er=Es
168
16 MB
State: Powered Off 8 MB
0S: Debian 10.x 64-bit 4 MB
Version: Workstation 8.x virtual ma
RAM: 2 GB
Play virtual machine
Edit virtual machine seftings

O «¢ & g2oo|& &

Block 7 — Results

The project successfully delivered a fully verified Kali Linux 2025.2 virtual machine,
prepared for use as the foundation of my cybersecurity home lab. The OS image was
validated through an automated hash comparison, ensuring its integrity and security before
deployment. A clean backup copy of the verified image has been stored separately, providing
areliable baseline for restoration or replication as needed. The VM is now installed on
VMware Workstation Player 16, successfully booted, and ready for tool updates,
configuration, and hardening in subsequent phases.

Block 8 — Next Steps

1. Perform a full system update to ensure all Kali tools and packages are current.

2. Install and configure UFW (Uncomplicated Firewall) for initial hardening of the
environment.

3. Document UFW rules and configurations as part of a follow-up report (BAR-2).

4. Test VM performance and resource allocation to confirm optimal settings.

	
	Written By Jeffery Waldron
	
	
	Block 1 – Project Title
	Block 2 – Objective
	Block 3 – Asset/Environment Details
	Block 4 – Build Procedure (Summary)
	Block 5 – Issues Encountered
	Block 6 – Key Evidence
	Block 7 – Results
	
	Block 8 – Next Steps

